
 Page 1/8

One implementation of a Hybrid On-line process monitoring
in PC based Real-Time systems

Bojan Jovanović1, Milun Jevtić1
1: Faculty of Electronic Engineering University of Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia

Abstract: This paper presents one way of FPGA
implementation of hybrid (hardware-software based)
on-line process monitoring in real-time systems
(RTS). The reasons for RTS monitoring as well as
RTS testing strategies followed by RTS monitoring
approaches are presented at the beginning. Timing
parameters of RT task along with monitoring
scenarios for pre-emptive and non pre-emptive RT
tasks are explained after. At the end, monitoring
module is described in details. Also, FPGA
implementation results and some useful monitoring
system applications are mentioned.

Keywords: on-line hybrid monitoring, real-time
systems, VHDL, FPGA

1. Introduction

For proper functionality of RTS it is necessary not
only to give the correct results on the outputs, but to
give them in exactly defined time interval. This is
especially true for hard real-time systems (HRTS),
because untimely execution of the tasks can lead to
disaster. Tracking the course of events in RTS while
RTS running we can make conclusions about
meeting the timing requirements. Therefore, can be
said with good reason that on-line monitoring
(monitoring while system is running) of processes
and events in HRTS is of enormous importance
because it provides its predictable behaviour. It is
needed in phase of system designing and
verification to prove the fulfilment of timing
requirements. It is also needed during the HRTS
operation to detect errors that caused deviations of
the predicted in time system behaviour.
Implementing on-line monitoring we can check the
execution time of every process/task or defined
program code segments, both from upper (maximum
execution time) and lower (minimum execution time)
side.

2. RTS testing strategies

Monitoring system is the process or set of possible
distributed processes whose main function is
dynamic acquisition, interpretation and participation
in information concerning application, during the
application execution [1]. Therefore can be said that
monitoring system improve vitality, security, fault
tolerance and adaptability of RTS. Since the testing
of the timing requirements of RTS directly depends

on processes, tasks and events monitoring, it is
necessary to say a few words about RTS testing
strategies. There are three basic strategies for
testing and correct functioning validation of RTS.
Sequential environment shown in Figure 1 is least
complex for implementation. Testing scenario is
created in off-line mode and test excitation is
generated before execution of the test procedure.
During the test, system response (the result of the
test) is stored in real time and later analyzed in off-
line mode to make a conclusion about functioning of
RTS. The disadvantage of this approach is inability
of the dynamic changes in the test scenario as well
as inability of tracking the course of the test events.
Also, the success or the failure of the test is known
only after the analysis.

Figure 1: Sequential organization of the testing

process

More complicated testing systems generate data for
test scenario in real-time, during the system
operation (Figure 2). Only the test results are
analyzed in off-line mode.

Figure 2: Testing with generating the test excitation

in real time

Only configuration shown in Figure 3 provides
complete testing in real-time and therefore on-line
RTS testing.

Figure 3: Testing scenario when all processes run in

real time

 Page 2/8

2.1 RTS process monitoring

Monitoring system is intrusive if it requires the use of
application resources (CPU time, I/O devices,
communication channels etc.). Monitoring systems
are mainly intrusive in some level. Completely non-
invasive monitoring system use specialized
hardware designed for monitoring. Ideal monitoring
system which is completely transparent to the target
system is very difficult to achieve in practice.
There are three basic approaches in implementation
of system monitoring:
 Software,
 Hardware and
 Hybrid approach.
Software implementation of RTS monitoring is
flexible, but largely intrusive and therefore
significantly disturb RTS timing characteristics.
Hardware based approach in implementation of RTS
monitoring is non-invasive in some level but requires
specialized hardware. Whereas the target system
must support the possibility of its installation, the use
of this approach is inflexible and clumsy. It should be
planned during the design of the target system.
Hybrid monitoring enables both, non-invasive nature
of the hardware approach and the flexibility of a
software approach. That’s why the hybrid monitoring
system is some kind of trade-off between pure
hardware and pure software monitoring approaches.

3. RT tasks and events

Total correctness of an RTS operation depends not
only upon its logical correctness, but also upon the
time in which it is performed. This is especially true
for HRTS where the completion of a task after its
deadline is considered useless. Ultimately, this may
cause a critical failure of the complete system.
Dasarathy gave a classification of timing constraints
for a RTS [2]. In general, there are two categories of
timing constraints:
 Performance constraints that set limits on the

response time of a system and
 Behavior constraints that make demands on the

rates at which users apply stimuli to the system.
Checking the timing parameters of RT tasks and
events, on-line monitoring checks correctness of
their execution.
3.1 Timing parameters

RT task τi can be characterized with the following
timing parameters (Figure 4): r – moment of
occurence of the request for task execution; B –
maximum delay to the start of task execution; C –
task execution time (needed CPU time); D – time
limit for task execution; T – period of occurence of
periodic tasks.

Figure 4: Timing parameters of RT task

3.2 RT task monitoring scenarios
According to its importance which they have in RTS
as well as according to their timing parameters, RT
tasks can be divided into pre-emptive and non pre-
emptive tasks.
Concerning its execution time, pre-emptive tasks,
unlike the non pre-emptive, do not have strict limits.
Also, their possible failure in execution would not
affect significantly the proper functioning of RTS.
Therefore, scheduler can pause the execution of
such tasks when receiving execution request from
some higher priority RT task. After the execution of
high priority task scheduler continues the execution
of previously paused task. On the other hand, non
pre-emptive tasks execution failure, or execution
outside given time limits can lead to whole RTS
failure. Because of this, high priorities are assigned
to these tasks, and they can not be paused while
running.
Non pre-emptive RT tasks: Possible course of non
pre-emptive task (τi) execution is shown on Figure 5.

Figure 5: Monitoring scenario of non pre-emptive
task execution

From the moment – event rk when request for task τi
execution occured, allowed delay to starting the task
execution can be checked at first. This is important
for the tasks that do not initiate with some external
interrupt event. These tasks are „set“ in the queue
for execution by some internal event. In the case of
exceeding the interval Bi, monitoring timer-counter
generates a hardware interrupt request, and error
Error_B is detected. Another monitored time interval
is task execution time (CPU time). For task
execution time which is shorter than Ci (minimum
required time for correct task execution), marker
Error_C- is set. In the case of exceeding the task
execution time Ci + Δi (maximum time for correct task
execution) monitoring module generates interrupt
request to detect error Error_C+.
Such monitor performs over each RT task. Upon
detection of any of these errors, it is the policy of the
planner and available time what will be taken.

 Page 3/8

Restarting of the same task or starting some
alternative task (λi) execution which will overcome
given situation can be done. For each task, deadline
Di for his execution should also be monitored.
Special counter-timer is most suitable for this
purpose. In the case of his exceeding, interrupt
request is generated and hardware-software security
task (τsi) is started. This security task should recover
RTS or place it in a safe condition.
Pre-emptive RT tasks: Monitoring of pre-emptive
tasks τi (Figure 6) differs from the previous
monitoring scenario. While his execution is stopped
because of higher priority task τj, its monitoring
timer-counter should be stopped (during Cj).

Figure 6: Monitoring scenario of pre-emptive task

execution

4. Related work

Can be said with a good reason that nowadays RTS
have a wide variety of applications. For each RTS it
is less or more useful to have some monitoring
module. Monitoring modules are particularly
essential for RTS in industrial applications since
prediction and avoidance of potential system failures
is of enormous importance. A good and efficient
approach to analyzing the behavior of a real-time
system is to use a monitor: a system that observes
and analyzes the behavior of target system. Such a
monitor could be used either as an "oracle" during
system testing, or as a "supervisor" to detect and
report system failure during operation [3],[4]. It is
necessary to obtain it as online monitor – system
monitoring in runtime without degradation of HRTS
properties. Monitoring can be achieved at various
levels. Low-level monitoring fetches every signal
transmitted on the buses. High-level monitoring
detects only process-level events.
Authors in [5] present a tool for real-time monitoring
and diagnostics of dynamic systems with particular
emphasis on gas turbine condition monitoring. In
order to detect changes or deteriorations and predict
the development of faults this software based
monitoring system performs both on-line system
continuously monitoring and software based
simulations of turbine dynamic response.
At least, for a distributed RTS characterized by non-
determinism, timing constraints and the low visibility
of system behavior, authors in [6] propose a non-
invasive monitoring architecture. Monitoring module
is non-invasive because it extracts information

directly from traffic on the internal buses of a target
distributed RT system. This module is general
purpose microprocessor based system that consists
of interface module and development module. The
main function of interface module is to copy the
internal states of the target node’s processor and,
under predefined trigger conditions, to start
recording data from the buses on the target node
onto the memory buffer unit. Development module
uses recorded data to perform monitoring.

5. Hybrid on-line process monitoring module

Depending on the application and environment,
timing constraints imposed on a RTS vary widely.
Here presented FPGA based monitoring module
would be applicable to each RTS determined to
meet strict timing constraints imposed by the real-
world processes. FPGAs are chosen because of
their low cost and ability for reconfiguration.

5.1 General descriptions

Posing the demand that on-line monitoring do not
require significant CPU time and clumsy additional
specialized hardware, this paper presents one way
of FPGA implementation of hybrid on-line RTS
monitoring. It is intended for RTS based on an
industrial PC and Linux operating system which is
widely accepted and available open source system
in RTS.
Implemented system monitors up to 32 processes
i.e. RT tasks and events that execute in parallel. The
number of monitored processes is relatively small,
but it should be said that HRTS in industrial
applications do not have a lot of processes. But
since our monitoring module for 32 processes
requires only 23% of FPGA resources, as will be
seen later, number of monitored processes can be
easily expanded up to 150.
The system is based on additional hardware module
with 32 programmable timer-counters and interrupt
logic [7]. Each monitored process has assigned his
own timer-counter. Timers-counters are used as
devices for defining the moments of events’ time
occurrence as well as watchdog i.e. monitoring
timers for checking the correct timing execution of
the processes. In addition, simple software primitives
for on-line monitoring implementation are realized.
They can be activated from the desired place in
application program code. For monitoring of the
processes and tasks in RTS without modification of
application program code, simple modification of the
operating system task scheduler and dispatcher is
predicted. Modification ensures that scheduler or
dispatcher, with every change of process/task status,
activates appropriate software primitive for
controlling timer and checking the time constraints.

 Page 4/8

For minimal intrusion and using of CPU time during
monitoring, hardware module for PCs PCI slot is
realized as shown on Figure 7.

Figure 7: PCI card with hybrid on-line monitoring

module

From Figure 7 can be seen that the interface from
monitoring module to RTS consists of the following
signals: Data Bus, Read, Write, INTR, INTA, sl and
clr.
DataBus is a 16 bit bidirectional bus. It transmits the
data from RTS to monitoring module and vice versa.
RTS activates Read (Write) signals each time when
need to read data from (write data to) monitoring
module.
Monitoring module sets INTR (Interrupt request)
signal each time when any of currently executing
tasks do not execute properly or execute outside of
required time interval.
As a response, RTS reads the message from Data
Bus and sets INTA (Interrupt Acknowledge) signal.
Message contains information about the interrupt
nature and the ID of the task that caused interrupt. It
is now scheduler policy to determine the actions that
will be taken.
When receiving Interrupt Acknowledge, monitoring
module resets INTR signal and continues to monitor
RTS.
sl signal is 3 bit select used by RTS when selecting
the register from which want to read data (or
selecting the register to write data to). The use of
this signal will be later explained with more details.
clr signal has a function of clear signal and it is used
by RTS to reset monitoring module.
Monitoring module is controlled by software
primitives from RTS and has the following functions:
 Setting the working mode of the timers-counters,
 Setting the time constraints,
 Enabling the timers-counters,
 Disabling the timers-counters,
 Reading the timers-counters,
 Timers-counters interrupt processing and

 Comparison of the timers-counters state with
time constraints.

During the system verification phase monitoring
system provides information about system timing
characteristics and creates a log file. During the
system operation it should detect deviations from
predicted timing behaviour. These deviations could
be the possible consequence of a failure in RTS.
Thereby, monitoring system has two working modes.
First mode refers to the system analysis. It performs
with the purpose to measure the execution time of
every RT task. Obtained information can be used for
the future control of the RTS. In the second mode
monitoring module has the function of built-in self-
testing based on a watchdog function. It checks the
upper and lower time limit at the tasks and periodic
and quasi-periodic events level. The activation of
each task initiates the procedure of starting his
assigned timer-counter. Monitoring timer-counter
sets to previously defined maximum task execution
time and starts its countdown. If excess of the time
interval happens, monitoring module sets interrupt
request. If the task is complete before time excess,
timer-counter stops its countdown with the end of
task execution. Monitoring module reads its state
and checks whether the task is executed before the
minimum needed execution time. If the task is
executed in regular time intervals RTS continues to
work. Otherwise, scheduler starts provided
procedure for system recovery from detected error.
In this way, predicted behaviour of HRTS is ensured.

5.2 Monitoring module architecture

In monitoring module architecture we can clearly
distinguish Data-path and Control Unit. But before
we describe them both separately, let’s still consider
communication interface between monitoring module
and RTS. From Figure 8 can be seen that monitoring
module communicates with RTS using four different
16 bits registers: DataRegRead, DataRegWrite,
CommandReg and StatusReg. All four registers
have enable (EN) signals for activation.
DataRegRead and DataRegWrite are registers for
data storage. Using DataRegRead RTS reads data
from monitoring module while using DataRegWrite
register RTS sends data to monitoring module. For
sending command to monitoring module
CommandReg is used. Monitoring module status
can be read from StatusReg. To access any of these
registers RTS uses Read, Write and sl signals as
shown in Table 1. So, setting sl to 000 and Read to 1
RTS activates DataReadReg (EnDataRegR<=’1’)
register. Its content is now available for RTS through
DataBus. With sl=001 and Write=1 RTS ensures that
DataRegWrite register is activated. 16 bit data from
DataBus are now stored into this register. With
sl=010 and Write=1 RTS stores data from DataBus

 Page 5/8

to CommandReg, while with sl=011 and Read=1
RTS reads the data from StatusReg.

Figure 8: Monitoring module – RTS communication

interface

Figure 9 shows bit-level structure of CommandReg
and StatusReg registers. 10 MSB bits of StatusReg
are not used. StatusReg(5) stores TCmin bit. This bit
is set to 1 each time when RT task is executed faster
than minimal required time for proper task execution.
The meaning of this bit will be explained with more
details when considering monitoring module Data-
path. Since module monitors up to 32 processes it is
necessary minimum 5 bits for indentify each of them.
So, 5 LSB bits of StatusReg store the identification
of the RT task (process) which caused the interrupt –
Interrupt ID.
Table 1: RTS – monitoring module communication

sl Read Write Selected
register Action

000 1 0 DataRegRead Reg to DataBus
001 0 1 DataRegWrite DataBus to Reg
010 0 1 CommandReg DataBus to Reg
011 1 0 StatusReg Reg to DataBus
Concerning CommandReg, his 5 MSB bit are not
used. CommandReg(10..9) bits store information
about the time quantum which is used when
measuring different time intervals. This two pace bits
will be considered later. CommandReg(8..5) bits
contain the code of the command while 5 LSB bits of
this register address the task to which the command
applies.

Figure 9: Status and Command register bit-level

structures

Monitoring module Data-path: To show the whole
monitoring module Data-path on a single figure
would be complicated. Therefore, Figure 10 shows
the part of the Data-path needed for a single RT
process. Each of 32 processes has the same
architecture. Data-paths of all processes are wired to
16 bits wide DataIn and DataOut buses so they

could communicate with RTS. All wires attached to
DataIn and DataOut buses are in high-impedance
state except one which in this moment uses the bus
for communication. 1MHz clock and frequency
divider are common for Data-paths of all processes.

Figure 10: The part of the Data-path needed for a

single RT task

As shown on Figure 10, single process Data-path
consists of one 3 bits wide CmdReg, one 4in1
multiplexer, one 16 bit counting-down counter, two
16 bits wide registers for storing constants Cmax and
Cmin and one RS flip-flop.
CmdReg MSB bit is used to enable/disable counter
while 2 LSB bits are attached to multiplexer select
signal in order to determine counter clock frequency
(pace bits). By setting Lr to 1 CmdReg can be
loaded from DataIn bus. Similarly, by setting OEr his
content is available through DataOut bus. After
reset, CmdReg content is 000. Using 1MHz clock
source time quantum for time measuring can be 1, 4,
16 or 64 µs. Accordingly, maximum time for task
execution can be 65.5, 262, 1048 or 4194 ms. It
should be noted that by changing clock source we
can obtain different time quantum and different
maximum task execution times.
CmaxReg and CminReg are 16 bits registers
intended for storing the constants that determine
maximum and minimum task execution time,
respectively. They are also wired to DataIn and
DataOut buses so they can be loaded through
DataIn bus by setting Lmax (Lmin) or its content can
be read through DataOut bus by setting OEmax
(OEmin). They are also connected to counter.
Counter is 16 bit and of counting-down type. Its
starting value can be set either from DataIn bus (by

 Page 6/8

setting Lc to 1) or from CmaxReg (by setting LCmax
to 1). Through DataOut bus his current state can be
read (by setting OEc to 1). TC bit is set to 1 when
counter, counting backward, reach the zero. This
means that maximum allowed task execution time
has expired. In all other counter states TC bit is 0.
Being S input of RS flip-flop, TC bit controls his
TCreq output. When TC=1, TCreq which, as will be
seen later, has a direct impact to INTR bit, is also set
to 1. TCmin counter output gives us the information
whether or not minimum task execution time has
expired. Since the counter can monitor both
CmaxReg and CminReg registers, it can measure
time expired from task execution beginning
(Equation 1) and compare it with minimum needed
one stored in CminReg.

expired_time = CmaxReg – counter_state [1]
While expired time is less than minimum required
task execution time (expired_time<CminReg value),
TCmin is set to 1, else to 0. After reset, counter is in
111...111 state. The part of the monitoring module
Data-path which is common to all tasks is shown on
Figure 11.

Figure 11: The part of the Data-path common to all
RT tasks

Decoder which is on the right-hand part of the Figure
11 is used to decode the way in which the inputs
(Load, OE, INTA and R) are connected to the
outputs. This is all done using 8 bits wide SEL
signal. Load input signal can be connected on the
following outputs: one of 32 different Lr signals, one
of 32 different Lc signals, one of 32 different LCmax
signals, one of 32 different Lmax signals or on one of
32 different Lmin signals. OE input signal can be
connected on the following outputs: one of 32
different OEr signals, one of 32 different OEc
signals, one of 32 different OEmax signals or one of
32 different OEmin signals. INTA input signal can be
connected on one of 32 different INTA outputs while
input R can be connected on one of 32 different Rc
output signals. To select which of the 32 different
outputs will be connected with the input 5 LSB bits of

SEL signal are used. In the case of Load and OE
signals, since they can be connected on different
types of Load and OE outputs, 3 MSB bits of SEL
signal are used to determine its connection to the
output. The way of determination is shown in Table
2.

Table 2: Load and OE signal connection protocol
SEL(7..5) bits Load connects to OE connects to

000 Lc OEc
001 LCmax
010 Lr OEr
011 Lmax OEmax
100 Lmin OEmin

So for example, let it SEL signal be equal to
01100111. With 5 LSB bits (00111) the 7th of a 32
different output is selected. R7 is connected to R and
INTA7 is to INTA. In the case of Load and OE
outputs, since 3 MSB bits of SEL signal are equal to
011, Lmax7 is connected to Load and OEmax7 to
OE.
With 32in1 multiplexer and using 5 LSB bits of SEL
signal, one of the 32 different TCmin bits is
connected to unique TCmin output.
32 different TCreq signals are connected to the
priority coder inputs. Priority coder gives 5 bits
identification of the process that caused the interrupt.
In the case when two or more processes require
interrupt, priority coder will identify the process with
the highest priority. 32 TCreq signals are also
connected to 32 inputs of OR logic gate with INTR
output.
So, if maximum allowed task execution time has
expired, TCreg is set to 1. Consequently, INTR is
also set to 1, and priority coder gives us the 5 bits
identification of the task that caused the interrupt.
These 5 bits are stored in Interrupt ID register.
Monitoring module Control Unit: For monitoring
module Control Unit finite state machine (FSM) is
used. FSM can be in the one of the following states:
s0, s1, s2, Start Process, Pause, End Process, Start
Measuring Time, Continue, Stop Measuring Time,
Load Counter, LoadRegMax, LoadRegMin, Read
Counter, ReadRegMax and ReadRegMin. FSM
clock source is equal to 50MHz. Consequently, FSM
moves from current to the next state every 20ns.
First part of algorithmic state mashine (ASM) chart of
FSM is presented on Figure 12. After reset in s0
state, next state is s1. In the s1 state FSM monitors
whether interrupt occurred. If so (INTR=1) FSM goes
to Interrupt state for interrupt processing. If there is
no interrupt (INTR=0), FSM waits for the command
to be received. If the command is received next state
is s2, else s1. In s2 state FSM reads the command
and moves to the next state according to received
command stored into CommandReg (Figure 9).
Pace bits from this register determine 2 LSB bits of
CmdReg, thus defining counter clock frequency.
Process ID bits determine RT task the command

 Page 7/8

applies to, while 4 Command Code bits from
CommandReg define desired command.

Figure 12: The first part of ASM chart

In interrupt state FSM loads Interrupt ID (En ID=1)
and status registers (LoadStatusReg=1) as well as
reset counter. Also, by writing 0xx (xx are pace bits)
into CmdReg counter is disabled. From interrupt
state FSM goes to s1 state after receiving interrupt
acknowledge (INTA) from RTS. Depending on the
received command, FSM can move from s2 to any
state shown on Figure 13. When Command Code is
0000, FSM moves to Start Process state. In this
state FSM loads the counter with Cmax value from
CmaxReg (LCmax=1) and enables counter to start
counting down (CmdReg=1xx). For 0001 Command
Code FSM is in Pause state. Here, FSM disables
counter by writing 0xx to CmdReg. In End Process
state (Command Code=0010) counter is disabled
and the value of TCmin bit is stored to StatusReg. If
TCmin=1 RTS knows that task was executed faster
than minimum required time for correct task
execution. When in Start Measuring Time state
(0011), FSM resets the counter (Rc=1) and enables
its counting down. Continue state (0100) is opposite
with Pause state. Here, FSM enables previously
disabled counter. Similarly, Stop Measuring Time
(0101) state is opposite with Start Measuring Time.
Here, counter is disabled and its current state is
loaded to DataRegRead (LoadDataRegR=1) register
through DataOut bus (OEc=1). From here, it is
available to RTS.

Figure 13: The rest of ASM chart

In Load Counter state (0110) data is loaded from
DataIn bus to counter, in LoadRegMax (0111) from
DataIn to CmaxReg, while in LoadRegMin state
(1000) from DataIn to CminReg register. FSM in
Read Counter state (1001) stores counter state
through DataOut bus to DataRegRead register.
When in ReadRegMax (1010) or ReadRegMin
(1011) state, FSM stores data from CmaxReg or
CminReg to DataRegRead register.

6. FPGA implementation

Each part of monitoring module communication
interface as well as of Data-path and Control Unit is
described in VHDL programming language and
implemented in EP2C35F672C6N FPGA chip on
Altera DE2 board [8]. The results of implementation
are shown in Table 3.
Table 3. FPGA implementation results

 Total logic elem. % FPGA Clock setup
Interface 165/33216 < 1% 241.25MHz
Data-path 7169/33216 22% 78.47MHz
FSM 172/33216 < 1% 280.50MHz
Σ 7506/33216 23%

From the Table can be seen that Data-path is the
most critical part of FPGA implementation. It requires
the most of FPGA resources and also determines
maximal operating frequency.
In order to prove its correct functionality monitoring
module was tested using DE2 board. From the board
commands were sent to the module and its response
were observed using registers of monitoring module
communication interface. For all possible commands
monitoring module responded as expected. Since
monitoring module was successsfully tested it is now
needed to chose one of many possible development
boards with PCI interface to implement it in. As a low
cost solution authors propose some of the
Raggedstone1 PCI development boards [9]. PCI

 Page 8/8

core for communication can be additionaly ordered
or found as an open core on [10].

7. Monitoring module applications

Some possible monitoring module applications were
not mentioned so far. That is because the monitoring
module was not developed for some particular
applications. Author’s intention was to make it
appropriate, with less or more changes, to as much
different RTS applications as possible.
The online monitor realization as quite independent
system of the objective HRTS, may result in very
complex and expensive real-time system (whose
affect to the system reliability would be very
interesting for considering), or in system that would
have a weak access to the events inside the HRTS.
Here, the realization of the event monitoring in time
is considered, and the attention is paid on monitoring
realization and application as a system for checking
the HRTS behavior in time. Through the monitoring
of the running tasks, faults in software running can
be detected and predictive behavior of HRTS can be
provided.
Much greater number (up to one thousand) of timers
can be placed on a single FPGA integrated circuit.
On that way, even one thousand processes (internet
links) in some server computer, can be monitored.

8. Conclusion

The need for an effective RTS monitoring is obvious,
especially in the case of HRTS. In order to be as
less intrusive as possible and as much flexible as
possible, one hybrid approach on RTS monitoring is
proposed. Intended for PC based RTS, monitoring
module uses PCI slot. Monitoring module is
described in details, along with its FPGA
implementation and some possible applications. It
should be said that with PCI Express standard
emerging proposed monitoring module can be less
intrusive and more efficient.

9. References

[1] Jane W., Liu S.: "Real-Time Systems", Prentice
Hall, 2000.

[2] Dasarathy B.: "Timing constraints of Real-Time
Systems", IEEE Trans. Software Engineering, Vol.
1, pp. 80-86, 1985.

[3] Dennis K. Peters, David Lorge Parnas,
Requirements-Based Monitors for Real-Time
Systems, IEEE Transactions on Software
Engineering, Vol. 26, No. 2, February 2002, pp.
146-158.

[4] Milun Jevtic, Volker Zerbe, Sandra Brankov,
“Multilevel Validation of On-Line Monitor for Hard
Real Time Systems“,Proc. 24th International
Conference on Microelectronics - MIEL 2004, Vol.
2, pp. 755-758, Nis, Serbia and Montenegro, 16-19.
may, 2004.

[5] Miline R., Nicol C.: "TIGER: a model based and a
rule based real-time tool for monitoring and
diagnostics of dynamic systems", IEE Colloquium
on Real-Time Knowledge Based Systems, London,
2002.

[6] Tsai J., Fang K., Chen H.: "A Noninvasive
Architecture to Monitor Real-Time Distributed
Systems", IEEE Computer Society, Vol. 23, pp. 11-
23, 2004.

[7] Jovanovic B., Jevtic M.: "Module for run-time
monitoring in PC hardware based real-time
system", Int. Scientific Conference - Unitech,
Gabrovo, Bulgaria, 2009.

[8] Altera DE2 user’s manual:
ftp://ftp.altera.com/up/pub/Webdocs/DE2_UserMan
ual.pdf

[9] Raggedstone1 user’s manual:
http://www.enterpoint.co.uk/moelbryn/raggedstone1
.html

[10] Opencores PCI core:
http://www.opencores.org/project,pci32tlite_oc,over
view.

10. Glossary

ASM: Algorithmic State Machine
ARM: Advanced RISC Machine
FPGA: Field Programmable Gate Array
FSM: Finite State Machine
HRTS: Hard Real Time System
IC: Integrated Circuit
LSB: Least Significant Bit
MSB: Most Significant Bit
PCI: Peripheral Component Interconnect
RTS: Real Time System
RT task: Real Time task
USB: Universal Serial Bus
VHDL: Very high speed integrated circuits Hardware

Description Language

