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Abstract: This paper presents one way of FPGA 
implementation of hybrid (hardware-software based) 
on-line process monitoring in real-time systems 
(RTS). The reasons for RTS monitoring as well as 
RTS testing strategies followed by RTS monitoring 
approaches are presented at the beginning. Timing 
parameters of RT task along with monitoring 
scenarios for pre-emptive and non pre-emptive RT 
tasks are explained after. At the end, monitoring 
module is described in details. Also, FPGA 
implementation results and some useful monitoring 
system applications are mentioned. 
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1. Introduction 

For proper functionality of RTS it is necessary not 
only to give the correct results on the outputs, but to 
give them in exactly defined time interval. This is 
especially true for hard real-time systems (HRTS), 
because untimely execution of the tasks can lead to 
disaster. Tracking the course of events in RTS while 
RTS running we can make conclusions about 
meeting the timing requirements. Therefore, can be 
said with good reason that on-line monitoring 
(monitoring while system is running) of processes 
and events in HRTS is of enormous importance 
because it provides its predictable behaviour. It is 
needed in phase of system designing and 
verification to prove the fulfilment of timing 
requirements. It is also needed during the HRTS 
operation to detect errors that caused deviations of 
the predicted in time system behaviour. 
Implementing on-line monitoring we can check the 
execution time of every process/task or defined 
program code segments, both from upper (maximum 
execution time) and lower (minimum execution time) 
side.  

2. RTS testing strategies 

Monitoring system is the process or set of possible 
distributed processes whose main function is 
dynamic acquisition, interpretation and participation 
in information concerning application, during the 
application execution [1]. Therefore can be said that 
monitoring system improve vitality, security, fault 
tolerance and adaptability of RTS. Since the testing 
of the timing requirements of RTS directly depends 

on processes, tasks and events monitoring, it is 
necessary to say a few words about RTS testing 
strategies. There are three basic strategies for 
testing and correct functioning validation of RTS.  
Sequential environment shown in Figure 1 is least 
complex for implementation. Testing scenario is 
created in off-line mode and test excitation is 
generated before execution of the test procedure. 
During the test, system response (the result of the 
test) is stored in real time and later analyzed in off-
line mode to make a conclusion about functioning of 
RTS. The disadvantage of this approach is inability 
of the dynamic changes in the test scenario as well 
as inability of tracking the course of the test events. 
Also, the success or the failure of the test is known 
only after the analysis. 

 
Figure 1: Sequential organization of the testing 

process 

More complicated testing systems generate data for 
test scenario in real-time, during the system 
operation (Figure 2). Only the test results are 
analyzed in off-line mode. 

 
Figure 2: Testing with generating the test excitation 

in real time 

Only configuration shown in Figure 3 provides 
complete testing in real-time and therefore on-line 
RTS testing. 

 
Figure 3: Testing scenario when all processes run in 

real time 
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2.1 RTS process monitoring 

Monitoring system is intrusive if it requires the use of 
application resources (CPU time, I/O devices, 
communication channels etc.). Monitoring systems 
are mainly intrusive in some level. Completely non-
invasive monitoring system use specialized 
hardware designed for monitoring. Ideal monitoring 
system which is completely transparent to the target 
system is very difficult to achieve in practice. 
There are three basic approaches in implementation 
of system monitoring: 
 Software, 
 Hardware and 
 Hybrid approach. 
Software implementation of RTS monitoring is 
flexible, but largely intrusive and therefore 
significantly disturb RTS timing characteristics. 
Hardware based approach in implementation of RTS 
monitoring is non-invasive in some level but requires 
specialized hardware. Whereas the target system 
must support the possibility of its installation, the use 
of this approach is inflexible and clumsy. It should be 
planned during the design of the target system. 
Hybrid monitoring enables both, non-invasive nature 
of the hardware approach and the flexibility of a 
software approach. That’s why the hybrid monitoring 
system is some kind of trade-off between pure 
hardware and pure software monitoring approaches.  

3. RT tasks and events 

Total correctness of an RTS operation depends not 
only upon its logical correctness, but also upon the 
time in which it is performed. This is especially true 
for HRTS where the completion of a task after its 
deadline is considered useless. Ultimately, this may 
cause a critical failure of the complete system. 
Dasarathy gave a classification of timing constraints 
for a RTS [2]. In general, there are two categories of 
timing constraints: 
 Performance constraints that set limits on the 

response time of a system and 
 Behavior constraints that make demands on the 

rates at which users apply stimuli to the system. 
Checking the timing parameters of RT tasks and 
events, on-line monitoring checks correctness of 
their execution. 
3.1 Timing parameters 

RT task τi can be characterized with the following 
timing parameters (Figure 4): r – moment of 
occurence of the request for task execution; B – 
maximum delay to the start of task execution; C – 
task execution time (needed CPU time); D – time 
limit for task execution; T – period of occurence  of 
periodic tasks. 

 
Figure 4: Timing parameters of RT task 

3.2 RT task monitoring scenarios 
According to its importance which they have in RTS 
as well as according to their timing parameters, RT 
tasks can be divided into pre-emptive and non pre-
emptive tasks. 
Concerning its execution time, pre-emptive tasks, 
unlike the non pre-emptive, do not have strict limits. 
Also, their possible failure in execution would not 
affect significantly the proper functioning of RTS. 
Therefore, scheduler can pause the execution of 
such tasks when receiving execution request from 
some higher priority RT task. After the execution of 
high priority task scheduler continues the execution 
of previously paused task. On the other hand, non 
pre-emptive tasks execution failure, or execution 
outside given time limits can lead to whole RTS 
failure. Because of this, high priorities are assigned 
to these tasks, and they can not be paused while 
running. 
Non pre-emptive RT tasks: Possible course of non 
pre-emptive task (τi) execution is shown on Figure 5. 

 

Figure 5: Monitoring scenario of non pre-emptive 
task execution 

From the moment – event rk when request for task τi 
execution occured, allowed delay to starting the task 
execution can be checked at first. This is important 
for the tasks that do not initiate with some external 
interrupt event. These tasks are „set“ in the queue 
for execution by some internal event. In the case of 
exceeding the interval Bi, monitoring timer-counter 
generates a hardware interrupt request, and error 
Error_B is detected. Another monitored time interval 
is task execution time (CPU time). For task 
execution time which is shorter than Ci (minimum 
required time for correct task execution), marker 
Error_C- is set. In the case of exceeding the task 
execution time Ci + Δi (maximum time for correct task 
execution) monitoring module generates interrupt 
request to detect error Error_C+. 
Such monitor performs over each RT task. Upon 
detection of any of these errors, it is the policy of the 
planner and available time what will be taken. 
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Restarting of the same task or starting some 
alternative task (λi) execution which will overcome 
given situation can be done. For each task, deadline 
Di for his execution should also be monitored. 
Special counter-timer is most suitable for this 
purpose. In the case of his exceeding, interrupt 
request is generated and hardware-software security 
task (τsi) is started. This security task should recover 
RTS or place it in a safe condition. 
Pre-emptive RT tasks: Monitoring of pre-emptive 
tasks τi (Figure 6) differs from the previous 
monitoring scenario. While his execution is stopped 
because of higher priority task τj, its monitoring 
timer-counter should be stopped (during Cj). 

 
Figure 6: Monitoring scenario of pre-emptive task 

execution 

4. Related work 

Can be said with a good reason that nowadays RTS 
have a wide variety of applications. For each RTS it 
is less or more useful to have some monitoring 
module. Monitoring modules are particularly 
essential for RTS in industrial applications since 
prediction and avoidance of potential system failures 
is of enormous importance. A good and efficient 
approach to analyzing the behavior of a real-time 
system is to use a monitor: a system that observes 
and analyzes the behavior of target system. Such a 
monitor could be used either as an "oracle" during 
system testing, or as a "supervisor" to detect and 
report system failure during operation [3],[4]. It is 
necessary to obtain it as online monitor – system 
monitoring in runtime without degradation of HRTS 
properties. Monitoring can be achieved at various 
levels. Low-level monitoring fetches every signal 
transmitted on the buses. High-level monitoring 
detects only process-level events.  
Authors in [5] present a tool for real-time monitoring 
and diagnostics of dynamic systems with particular 
emphasis on gas turbine condition monitoring. In 
order to detect changes or deteriorations and predict 
the development of faults this software based 
monitoring system performs both on-line system 
continuously monitoring and software based 
simulations of turbine dynamic response.  
At least, for a distributed RTS characterized by non-
determinism, timing constraints and the low visibility 
of system behavior, authors in [6] propose a non-
invasive monitoring architecture. Monitoring module 
is non-invasive because it extracts information 

directly from traffic on the internal buses of a target 
distributed RT system. This module is general 
purpose microprocessor based system that consists 
of interface module and development module. The 
main function of interface module is to copy the 
internal states of the target node’s processor and, 
under predefined trigger conditions, to start 
recording data from the buses on the target node 
onto the memory buffer unit. Development module 
uses recorded data to perform monitoring. 

5. Hybrid on-line process monitoring module 

Depending on the application and environment, 
timing constraints imposed on a RTS vary widely. 
Here presented FPGA based monitoring module 
would be applicable to each RTS determined to 
meet strict timing constraints imposed by the real-
world processes. FPGAs are chosen because of 
their low cost and ability for reconfiguration. 

5.1 General descriptions 
 
Posing the demand that on-line monitoring do not 
require significant CPU time and clumsy additional 
specialized hardware, this paper presents one way 
of FPGA implementation of hybrid on-line RTS 
monitoring. It is intended for RTS based on an 
industrial PC and Linux operating system which is 
widely accepted and available open source system 
in RTS. 
Implemented system monitors up to 32 processes 
i.e. RT tasks and events that execute in parallel. The 
number of monitored processes is relatively small, 
but it should be said that HRTS in industrial 
applications do not have a lot of processes. But 
since our monitoring module for 32 processes 
requires only 23% of FPGA resources, as will be 
seen later, number of monitored processes can be 
easily expanded up to 150.  
The system is based on additional hardware module 
with 32 programmable timer-counters and interrupt 
logic [7]. Each monitored process has assigned his 
own timer-counter. Timers-counters are used as 
devices for defining the moments of events’ time 
occurrence as well as watchdog i.e. monitoring 
timers for checking the correct timing execution of 
the processes. In addition, simple software primitives 
for on-line monitoring implementation are realized. 
They can be activated from the desired place in 
application program code. For monitoring of the 
processes and tasks in RTS without modification of 
application program code, simple modification of the 
operating system task scheduler and dispatcher is 
predicted. Modification ensures that scheduler or 
dispatcher, with every change of process/task status, 
activates appropriate software primitive for 
controlling timer and checking the time constraints. 
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For minimal intrusion and using of CPU time during 
monitoring, hardware module for PCs PCI slot is 
realized as shown on Figure 7. 

 
Figure 7: PCI card with hybrid on-line monitoring 

module 

From Figure 7 can be seen that the interface from 
monitoring module to RTS consists of the following 
signals: Data Bus, Read, Write, INTR, INTA, sl and 
clr. 
DataBus is a 16 bit bidirectional bus. It transmits the 
data from RTS to monitoring module and vice versa. 
RTS activates Read (Write) signals each time when 
need to read data from (write data to) monitoring 
module. 
Monitoring module sets INTR (Interrupt request) 
signal each time when any of currently executing 
tasks do not execute properly or execute outside of 
required time interval. 
As a response, RTS reads the message from Data 
Bus and sets INTA (Interrupt Acknowledge) signal. 
Message contains information about the interrupt 
nature and the ID of the task that caused interrupt. It 
is now scheduler policy to determine the actions that 
will be taken. 
When receiving Interrupt Acknowledge, monitoring 
module resets INTR signal and continues to monitor 
RTS. 
sl signal is 3 bit select used by RTS when selecting 
the register from which want to read data (or 
selecting the register to write data to). The use of 
this signal will be later explained with more details. 
clr signal has a function of clear signal and it is used 
by RTS to reset monitoring module. 
Monitoring module is controlled by software 
primitives from RTS and has the following functions: 
 Setting the working mode of the timers-counters, 
 Setting the time constraints, 
 Enabling the timers-counters, 
 Disabling the timers-counters, 
 Reading the timers-counters, 
 Timers-counters interrupt processing and 

 Comparison of the timers-counters state with 
time constraints. 

During the system verification phase monitoring 
system provides information about system timing 
characteristics and creates a log file. During the 
system operation it should detect deviations from 
predicted timing behaviour. These deviations could 
be the possible consequence of a failure in RTS. 
Thereby, monitoring system has two working modes. 
First mode refers to the system analysis. It performs 
with the purpose to measure the execution time of 
every RT task. Obtained information can be used for 
the future control of the RTS. In the second mode 
monitoring module has the function of built-in self-
testing based on a watchdog function. It checks the 
upper and lower time limit at the tasks and periodic 
and quasi-periodic events level. The activation of 
each task initiates the procedure of starting his 
assigned timer-counter. Monitoring timer-counter 
sets to previously defined maximum task execution 
time and starts its countdown. If excess of the time 
interval happens, monitoring module sets interrupt 
request. If the task is complete before time excess, 
timer-counter stops its countdown with the end of 
task execution. Monitoring module reads its state 
and checks whether the task is executed before the 
minimum needed execution time. If the task is 
executed in regular time intervals RTS continues to 
work. Otherwise, scheduler starts provided 
procedure for system recovery from detected error. 
In this way, predicted behaviour of HRTS is ensured. 
 

5.2 Monitoring module architecture 

In monitoring module architecture we can clearly 
distinguish Data-path and Control Unit. But before 
we describe them both separately, let’s still consider 
communication interface between monitoring module 
and RTS. From Figure 8 can be seen that monitoring 
module communicates with RTS using four different 
16 bits registers: DataRegRead, DataRegWrite, 
CommandReg and StatusReg. All four registers 
have enable (EN) signals for activation. 
DataRegRead and DataRegWrite are registers for 
data storage. Using DataRegRead RTS reads data 
from monitoring module while using DataRegWrite 
register RTS sends data to monitoring module. For 
sending command to monitoring module 
CommandReg is used. Monitoring module status 
can be read from StatusReg. To access any of these 
registers RTS uses Read, Write and sl signals as 
shown in Table 1. So, setting sl to 000 and Read to 1 
RTS activates DataReadReg (EnDataRegR<=’1’) 
register. Its content is now available for RTS through 
DataBus. With sl=001 and Write=1 RTS ensures that 
DataRegWrite register is activated. 16 bit data from 
DataBus are now stored into this register. With 
sl=010 and Write=1 RTS stores data from DataBus 
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to CommandReg, while with sl=011 and Read=1 
RTS reads the data from StatusReg.  

 
Figure 8: Monitoring module – RTS communication 

interface 

Figure 9 shows bit-level structure of CommandReg 
and StatusReg registers. 10 MSB bits of StatusReg 
are not used. StatusReg(5) stores TCmin bit. This bit 
is set to 1 each time when RT task is executed faster 
than minimal required time for proper task execution. 
The meaning of this bit will be explained with more 
details when considering monitoring module Data-
path. Since module monitors up to 32 processes it is 
necessary minimum 5 bits for indentify each of them. 
So, 5 LSB bits of StatusReg store the identification 
of the RT task (process) which caused the interrupt – 
Interrupt ID. 
Table 1: RTS – monitoring module communication 

sl Read Write Selected 
register  Action 

000 1 0 DataRegRead Reg to DataBus  
001 0 1 DataRegWrite DataBus to Reg  
010 0 1 CommandReg DataBus to Reg  
011 1 0 StatusReg Reg to DataBus  
Concerning CommandReg, his 5 MSB bit are not 
used. CommandReg(10..9) bits store information 
about the time quantum which is used when 
measuring different time intervals. This two pace bits 
will be considered later. CommandReg(8..5) bits 
contain the code of the command while 5 LSB bits of 
this register address the task to which the command 
applies. 

 
Figure 9: Status and Command register bit-level 

structures 

Monitoring module Data-path: To show the whole 
monitoring module Data-path on a single figure 
would be complicated. Therefore, Figure 10 shows 
the part of the Data-path needed for a single RT 
process. Each of 32 processes has the same 
architecture. Data-paths of all processes are wired to 
16 bits wide DataIn and DataOut buses so they 

could communicate with RTS. All wires attached to 
DataIn and DataOut buses are in high-impedance 
state except one which in this moment uses the bus 
for communication. 1MHz clock and frequency 
divider are common for Data-paths of all processes. 

 
Figure 10: The part of the Data-path needed for a 

single RT task  

As shown on Figure 10, single process Data-path 
consists of one 3 bits wide CmdReg, one 4in1 
multiplexer, one 16 bit counting-down counter, two 
16 bits wide registers for storing constants Cmax and 
Cmin and one RS flip-flop.  
CmdReg MSB bit is used to enable/disable counter 
while 2 LSB bits are attached to multiplexer select 
signal in order to determine counter clock frequency 
(pace bits). By setting Lr to 1 CmdReg can be 
loaded from DataIn bus. Similarly, by setting OEr his 
content is available through DataOut bus. After 
reset, CmdReg content is 000. Using 1MHz clock 
source time quantum for time measuring can be 1, 4, 
16 or 64 µs. Accordingly, maximum time for task 
execution can be 65.5, 262, 1048 or 4194 ms.  It 
should be noted that by changing clock source we 
can obtain different time quantum and different 
maximum task execution times.  
CmaxReg and CminReg are 16 bits registers 
intended for storing the constants that determine 
maximum and minimum task execution time, 
respectively. They are also wired to DataIn and 
DataOut buses so they can be loaded through 
DataIn bus by setting Lmax (Lmin) or its content can 
be read through DataOut bus by setting OEmax 
(OEmin). They are also connected to counter.  
Counter is 16 bit and of counting-down type. Its 
starting value can be set either from DataIn bus (by 
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setting Lc to 1) or from CmaxReg (by setting LCmax 
to 1). Through DataOut bus his current state can be 
read (by setting OEc to 1). TC bit is set to 1 when 
counter, counting backward, reach the zero. This 
means that maximum allowed task execution time 
has expired. In all other counter states TC bit is 0. 
Being S input of RS flip-flop, TC bit controls his 
TCreq output. When TC=1, TCreq which, as will be 
seen later, has a direct impact to INTR bit, is also set 
to 1. TCmin counter output gives us the information 
whether or not minimum task execution time has 
expired. Since the counter can monitor both 
CmaxReg and CminReg registers, it can measure 
time expired from task execution beginning 
(Equation 1) and compare it with minimum needed 
one stored in CminReg. 

expired_time = CmaxReg – counter_state  [1] 
While expired time is less than minimum required 
task execution time (expired_time<CminReg value), 
TCmin is set to 1, else to 0. After reset, counter is in 
111...111 state. The part of the monitoring module 
Data-path which is common to all tasks is shown on 
Figure 11.  

 

Figure 11: The part of the Data-path common to all 
RT tasks 

Decoder which is on the right-hand part of the Figure 
11 is used to decode the way in which the inputs 
(Load, OE, INTA and R) are connected to the 
outputs. This is all done using 8 bits wide SEL 
signal. Load input signal can be connected on the 
following outputs:  one of 32 different Lr signals, one 
of 32 different Lc signals, one of 32 different LCmax 
signals, one of 32 different Lmax signals or on one of 
32 different Lmin signals. OE input signal can be 
connected on the following outputs: one of 32 
different OEr signals, one of 32 different OEc 
signals, one of 32 different OEmax signals or one of 
32 different OEmin signals. INTA input signal can be 
connected on one of 32 different INTA outputs while 
input R can be connected on one of 32 different Rc 
output signals. To select which of the 32 different 
outputs will be connected with the input 5 LSB bits of 

SEL signal are used. In the case of Load and OE 
signals, since they can be connected on different 
types of Load and OE outputs, 3 MSB bits of SEL 
signal are used to determine its connection to the 
output. The way of determination is shown in Table 
2. 

Table 2: Load and OE signal connection protocol 
SEL(7..5) bits Load connects to OE connects to 

000 Lc OEc 
001 LCmax  
010 Lr OEr 
011 Lmax OEmax 
100 Lmin OEmin 

So for example, let it SEL signal be equal to 
01100111. With 5 LSB bits (00111) the 7th of a 32 
different output is selected. R7 is connected to R and 
INTA7 is to INTA. In the case of Load and OE 
outputs, since 3 MSB bits of SEL signal are equal to 
011, Lmax7 is connected to Load and OEmax7 to 
OE. 
With 32in1 multiplexer and using 5 LSB bits of SEL 
signal, one of the 32 different TCmin bits is 
connected to unique TCmin output. 
32 different TCreq signals are connected to the 
priority coder inputs. Priority coder gives 5 bits 
identification of the process that caused the interrupt. 
In the case when two or more processes require 
interrupt, priority coder will identify the process with 
the highest priority. 32 TCreq signals are also 
connected to 32 inputs of OR logic gate with INTR 
output. 
So, if maximum allowed task execution time has 
expired, TCreg is set to 1. Consequently, INTR is 
also set to 1, and priority coder gives us the 5 bits 
identification of the task that caused the interrupt. 
These 5 bits are stored in Interrupt ID register. 
Monitoring module Control Unit: For monitoring 
module Control Unit finite state machine (FSM) is 
used. FSM can be in the one of the following states: 
s0, s1, s2, Start Process, Pause, End Process, Start 
Measuring Time, Continue, Stop Measuring Time, 
Load Counter, LoadRegMax, LoadRegMin, Read 
Counter, ReadRegMax and ReadRegMin. FSM 
clock source is equal to 50MHz. Consequently, FSM 
moves from current to the next state every 20ns. 
First part of algorithmic state mashine (ASM) chart of 
FSM is presented on Figure 12. After reset in s0 
state, next state is s1. In the s1 state FSM monitors 
whether interrupt occurred. If so (INTR=1) FSM goes 
to Interrupt state for interrupt processing. If there is 
no interrupt (INTR=0), FSM waits for the command 
to be received. If the command is received next state 
is s2, else s1. In s2 state FSM reads the command 
and moves to the next state according to received 
command stored into CommandReg (Figure 9). 
Pace bits from this register determine 2 LSB bits of 
CmdReg, thus defining counter clock frequency. 
Process ID bits determine RT task the command 
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applies to, while 4 Command Code bits from 
CommandReg define desired command. 

 

Figure 12: The first part of ASM chart 

In interrupt state FSM loads Interrupt ID (En ID=1) 
and status registers (LoadStatusReg=1) as well as 
reset counter. Also, by writing 0xx (xx are pace bits) 
into CmdReg counter is disabled. From interrupt 
state FSM goes to s1 state after receiving interrupt 
acknowledge (INTA) from RTS. Depending on the 
received command, FSM can move from s2 to any 
state shown on Figure 13. When Command Code is 
0000, FSM moves to Start Process state. In this 
state FSM loads the counter with Cmax value from 
CmaxReg (LCmax=1) and enables counter to start 
counting down (CmdReg=1xx). For 0001 Command 
Code FSM is in Pause state. Here, FSM disables 
counter by writing 0xx to CmdReg. In End Process 
state (Command Code=0010) counter is disabled 
and the value of TCmin bit is stored to StatusReg. If 
TCmin=1 RTS knows that task was executed faster 
than minimum required time for correct task 
execution. When in Start Measuring Time state 
(0011), FSM resets the counter (Rc=1) and enables 
its counting down. Continue state (0100) is opposite 
with Pause state. Here, FSM enables previously 
disabled counter. Similarly, Stop Measuring Time 
(0101) state is opposite with Start Measuring Time. 
Here, counter is disabled and its current state is 
loaded to DataRegRead (LoadDataRegR=1) register 
through DataOut bus (OEc=1). From here, it is 
available to RTS. 

 

Figure 13: The rest of ASM chart 

In Load Counter state (0110) data is loaded from 
DataIn bus to counter, in LoadRegMax (0111) from 
DataIn to CmaxReg, while in LoadRegMin state 
(1000) from DataIn to CminReg register. FSM in 
Read Counter state (1001) stores counter state 
through DataOut bus to DataRegRead register. 
When in ReadRegMax (1010) or ReadRegMin 
(1011) state, FSM stores data from CmaxReg or 
CminReg to DataRegRead register. 

6. FPGA implementation 

Each part of monitoring module communication 
interface as well as of Data-path and Control Unit is 
described in VHDL programming language and 
implemented in EP2C35F672C6N FPGA chip on 
Altera DE2 board [8]. The results of implementation 
are shown in Table 3. 
Table 3. FPGA implementation results 

 Total logic elem. % FPGA Clock setup 
Interface 165/33216 < 1% 241.25MHz 
Data-path 7169/33216 22% 78.47MHz 
FSM 172/33216 < 1% 280.50MHz 
Σ 7506/33216 23%  

From the Table can be seen that Data-path is the 
most critical part of FPGA implementation. It requires 
the most of FPGA resources and also determines 
maximal operating frequency. 
In order to prove its correct functionality monitoring 
module was tested using DE2 board. From the board 
commands were sent to the module and its response 
were observed using registers of monitoring module 
communication interface. For all possible commands 
monitoring module responded as expected. Since 
monitoring module was successsfully tested it is now 
needed to chose one of many possible development 
boards with PCI interface to implement it in. As a low 
cost solution authors propose some of the 
Raggedstone1 PCI development boards [9]. PCI 
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core for communication can be additionaly ordered 
or found as an open core on [10]. 

7. Monitoring module applications 

Some possible monitoring module applications were 
not mentioned so far. That is because the monitoring 
module was not developed for some particular 
applications. Author’s intention was to make it 
appropriate, with less or more changes, to as much 
different RTS applications as possible.  
The online monitor realization as quite independent 
system of the objective HRTS, may result in very 
complex and expensive real-time system (whose 
affect to the system reliability would be very 
interesting for considering), or in system that would 
have a weak access to the events inside the HRTS. 
Here, the realization of the event monitoring in time 
is considered, and the attention is paid on monitoring 
realization and application as a system for checking 
the HRTS behavior in time. Through the monitoring 
of the running tasks, faults in software running can 
be detected and predictive behavior of HRTS can be 
provided. 
Much greater number (up to one thousand) of timers 
can be placed on a single FPGA integrated circuit. 
On that way, even one thousand processes (internet 
links) in some server computer, can be monitored. 

8. Conclusion 

The need for an effective RTS monitoring is obvious, 
especially in the case of HRTS. In order to be as 
less intrusive as possible and as much flexible as 
possible, one hybrid approach on RTS monitoring is 
proposed. Intended for PC based RTS, monitoring 
module uses PCI slot. Monitoring module is 
described in details, along with its FPGA 
implementation and some possible applications. It 
should be said that with PCI Express standard 
emerging proposed monitoring module can be less 
intrusive and more efficient. 
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10. Glossary 

ASM: Algorithmic State Machine 
ARM: Advanced RISC Machine 
FPGA: Field Programmable Gate Array 
FSM: Finite State Machine 
HRTS: Hard Real Time System 
IC: Integrated Circuit 
LSB: Least Significant Bit 
MSB: Most Significant Bit 
PCI: Peripheral Component Interconnect 
RTS: Real Time System 
RT task: Real Time task 
USB: Universal Serial Bus 
VHDL: Very high speed integrated circuits Hardware 
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